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Abstract: In recent years, the National Basketball Association (NBA) has experienced 

a significant increase in the use of predictive analytics by franchises and outside in-

terest holders. As such, there is an abundance of clean, publicly available data waiting 

to be investigated. Additionally, each year the NBA provides an award to the Most 

Valuable Player (MVP), the winner of which is voted for by a panel of NBA media 

members. Along with this award comes great prestige, as well as significant financial 

incentives. The goal of this paper is to implement multiple Machine Learning (ML) 

algorithms on individual player statistics and MVP voting totals to accurately classify 

candidates in the running to win the NBA MVP award. After training and testing, 

accuracy testing showed very high accuracy for three algorithms: Support Vector Ma-

chines (SVM), Random Forest (RF) and Gradient Tree Boosting (GTB). 

Keywords: Machine Learning, Classification, National Basketball Association, Most 

Valuable Player (MVP), Python. 

 

1. Introduction 

1.1. Machine Learning  

As our society has shifted radically from nondigital toward the wide-

spread, nearly universal adoption of computerized technology, many conse-

quences have arisen. One of the consequences accompanying that shift has 

been an unfathomable increase in the amount of data that is created. Across 

every industry and all aspects of human life, an infinitude of new data points 

are being created. Companies like Google have constructed their entire busi-

ness models around the collection, processing and distribution of data. In this 

paper, we will be utilizing one of the most effective tools in our new world of 

data: Machine Learning. 

Machine Learning is a sub-field of the larger field of artificial intelligence 

(AI) that is concerned with creating algorithmic models that process data to 

complete a task. More specifically, ML involves creating and/or implement-

ing algorithms that improve their own efficacy i.e., learn [1]. This ability to 

optimize is only made possible as a result of the existence of large datasets. 

Without any data, the entire endeavor is impossible, and without a large 

amount of data, any results are likely useless. 
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Most often, Machine Learning is implemented for its predictive quali-

ties, although it also has strong descriptive capabilities [1]. The range of tasks 

in which it can be deployed are staggering, including disease prediction, 

chemical research, content recommendation, facial recognition, etc. [1] [2]. In-

deed, given appropriate data, there are few tasks for which Machine Learning 

would not be fit to attempt to complete. 

One of the most common types of ML tasks, and the one that is at-

tempted in this paper, is a predictive task known as classification. Classifica-

tion is an example of supervised learning in which a dataset is split into two 

subsets: training data and test data. The ML algorithms that are being imple-

mented are initially given the training data as input. During this training 

phase, the algorithms create models that optimize themselves according to 

their specific method of optimization, which varies depending on the given 

algorithm. Then, after fully optimizing on the training data, the models are 

deployed on the test data to determine their predictive capabilities [3]. 

1.2. National Basketball Association’s Most Valuable Player Award    

Each season, the National Basketball Association (NBA) provides the 

Most Valuable Player (MVP) Award to a single player who is thought to have 

been the “best” player during that season. The recipient of the award is de-

termined by a panel of NBA media members, who are each allowed to make 

a ranked list of five players. Each rank is assigned a different number of 

points. For example, for the 2020-2021 NBA season, the points per vote were 

assigned as follows: first place – 10 points; second place – 7 points; third place 

– 5 points; fourth place – 3 points; fifth place – 1 point [4]. 

There are multiple factors that are considered when determining 

whether a player is an MVP candidate. The first factor is team success. Over 

the last 10 seasons, the lowest team winning percentage (from 0.0 to 1.) rec-

orded for any MVP is 0.573. The average winning percentage over that same 

span is 0.745 [5]. This makes it clear that voters tend to value the team success 

of potential MVP candidates highly. The second factor is most easily de-

scribed as the relative burden placed on the candidate. For example, given 

the previously mentioned high team winning percentage, a candidate who is 

the only “star” player on their team will tend to accrue more favor than a 

candidate who has help from one or more teammates who are also “star” 

players. This is by far the most subjective factor, but it plays a large role, none-

theless. The final major factor is individual performance. Generally, the 

higher the level of performance, the more likely it is a candidate will receive 

MVP votes.  

In the NBA, level of performance is readily determined by statistical 

measures. In the “modern” era, the NBA has seen a dramatic increase in the 

use of advanced metrics as well as predictive analytics. Teams use these new 

metrics and predictions to advise their decision-making processes. Some of 

the data that is gathered is private or gated by prohibitive pricing, however, 

much of it is publicly available. In this paper, a selection of statistics that are 

most likely to provide the highest predictive value are taken from these pub-

licly available datasets to be used in tandem with a selection of ML algo-

rithms.  

2. Proposed Models 

2.1. Support Vector Machines 

For the purposes of this paper, a Support Vector Machine (SVM) is a type 

of Machine Learning model that can be used to perform classification tasks. 
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Generally speaking, it is capable of accomplishing other tasks, like regression 

and outlier detection, however, it will not be implemented in those ways for 

the task in the current paper [6].   

SVMs fall into the larger category of supervised learning models, mean-

ing that in order to effectively perform a given task it must be trained on a set 

of data that has already been assigned classes. According to Ling and Rong, 

SVMs have traditionally been used in instances where there are only two clas-

ses into which a sample can be assigned, otherwise known as binary classifi-

cation [7]. An example of binary classification would be determining whether 

a lightbulb is “on” or “off”. In this example, class one includes all lightbulbs 

that are on, while class two includes all lightbulbs that are off. SVMs also have 

the capability to perform classification for more than two classes [6]. 

 

Figure 1. A graphical representation of the decision function for SVM. 

During the training phase of a typical binary classification task, SVMs 

map data samples to points in space in accordance with the values of their 

attributes. After the samples have been mapped, a line – known as a hyper-

plane – is drawn to bisect the two classes [8]. This hyperplane is a decision 

boundary that determines which class each sample belongs to. In figure 1 [6], 

the solid line indicates the hyperplane that divides the data into two classes.  

The location of the hyperplane in space is determined by points called 

support vectors. Support vectors are the samples from both classes that are 

located closest to the hyperplane in space [8]. In figure 1, the class on the bot-

tom (red) has two support vectors, indicated by the two red dots with a dot-

ted line running through them. The class on the top (blue) has a single sup-

port vector, indicated by the single blue dot with a dotted line running 

through it. The hyperplane is drawn to be parallel to and equidistant from 

the lines drawn through the support vectors [8]. 

The area in between the two support vector lines is called the margin. 

As the margin increases, the effectiveness of the model also increases [6]. The 

lines themselves are called margin boundaries. While the hyperplane is tech-

nically a decision boundary -- since any point on either side will belong to the 

proper class -- the margin boundaries optimize the model’s ability to classify, 

acting as a form of secondary decision boundaries [9]. Notice that in figure 1, 

all samples for either class are on the opposite side of the margin boundary 

from the hyperplane (apart from the support vectors, which fall on the mar-

gin boundaries). 

Finally, the farther a point is from the hyperplane/margin boundaries, 

the stronger the predictive confidence is for that sample [9].  
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2.2. Random Forest 

Like SVMs, Random Forest (RF) algorithms fall under the larger cate-

gory of supervised learning models. Again, similarly to SVMs, RFs can be 

utilized to perform both classification and regression tasks [10]. Using a RF 

algorithm can be both flexible and easy because it utilizes decision trees to 

discover the best solution. A decision tree is a relatively simple recursive de-

cision-making process that can be thought of as a line that “branches” off for 

every attribute belonging to an input sample. RF models use large numbers 

of these decision trees in concert to come to predictive conclusions. Each in-

dividual decision tree’s prediction is tallied as a vote, and the predictive out-

come that is voted for most becomes the final predictive outcome for the en-

tire model.  

Random Forest can perform with high accuracy with all the trees in-

volved because it takes the average of every prediction and cancels out the 

biases [10]. There are two important parts with the data: first, find all the data 

that is most crucial with each data piece. The second part involves dividing 

the data to find the most valuable solution, which is the most valuable player 

(MVP) in our scenario. The candidate that scored as the MVP is represented 

by 1, and the candidate that did not make the MVP is represented by 0. 

From an implementation standpoint, the Python packages used in this 

process include pandas, scikitlearn, seaborn and matplotlib [11]. Pandas is 

used to create the data frame using lists for each candidates’ expectations. 

Once the dataframe of the dataset is formed, the columns are split into de-

pendent and independent variables.  

The features are represented as X and includes the data used for each 

player. The labels (such as “is the MVP” or “not the MVP”) are represented 

as y. The train_test_split process is then used in Python with scikit-learn to 

use model testing and training with the dataset. Then it is possible to split the 

inputs and outputs at the same time, with a single function call [12]. The Ran-

dom Forest is then applied as shown in figure 2 [11]. 

 

Figure 2. Implementation of RF Classifier in Python 

Once this is applied, the confusion matrix is used for actual and pre-

dicted outcomes. Below is an example with pandas seaborn and matplotlib 

in figure 3 [13].  

Matplotlib is within Python’s library and used to plot the results [14]. 

Setting the margins equal to True makes it easier to add the totals within the 

confusion matrix. Once the code is run, the confusion matrix shows the totals 

with a graph such that we can see all possible outcomes. 

Below is an example of a prediction outcome with pandas seaborn mat-

plotlib all in use with a confusion matrix as shows in figure 3 [13]. 
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Figure 3. Implementation of a confusion matrix in Python. 

There are several options to choose from for a good visualization graph 

with colors and overall shape of the data being presented. Because seaborn is 

built on top of matplotlib, they are both equally important to have good vis-

ualization such as what is presented below in figure 4 [14]. 

 
Figure 4. Graphical representation of a confusion matrix. 

 

After training it is important to check the accuracy using actual pre-

dicted values. A smaller number of features reduces training time and remov-

ing the least important features causes the accuracy to increase.  

Using the feature importance variable to see feature importance scores 

shows the relative importance or contribution of each feature.   

One of the main disadvantages of using RF models is that they are ex-

pensive from a processing perspective, because of the sheer number of deci-

sion trees that need to be computed. As a result, predictive output can take 

more time than other, less computationally expensive methods [10].   

2.3. Naïve Bayes 

The Naïve Bayes (NB) algorithm dependably performs at a high level, 

while still being a solid option for a clean way to implement a Machine Learn-

ing algorithm [15]. The assumptions leading to the attributes of the algorithm 

can be a hurdle for some, which is why there has been a lot of work done on 

extending and morphing this algorithm.   

Generally speaking, when operating in the world it can be extremely dif-

ficult for one to make assumptions with high confidence. That is part of what 

makes this algorithm ‘naïve’, in addition to the set of variables being used. 

The likelihood of each variable being used are independent of each other and 

do not take order into consideration. Simply put, NB is seeing the probability 

that certain variables presented are either one outcome or another. This is 

determined by using a training dataset. 

 The algorithm looks at each variable and calculates the probability of 

that variable being present for either outcome. Then, when presented with a 
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problem, the algorithm calculates the likelihood of these variables being at 

that specific level. To break it down even simpler, this algorithm takes the 

training dataset and creates histograms for each variable to find the probabil-

ities needed for that variable to be a signal for this outcome to be chosen. In 

its most basic form, NB is separated into two training datasets that then trains 

the algorithm on the probabilities of each outcome. Then, when an outcome 

is presented, the algorithm makes a decision based on the likelihood it knows 

according to the training datasets. This technique is simple yet effective and 

brings value to many situations. 

2.4. Gradient Tree Boosting 

Gradient Tree Boosting is used to perform ensemble classification. Com-

pared to Random Forests; Gradient Boosted Trees have a lot of model capac-

ity, so they can model very complex relationships and model boundaries. 

However, more model capacity can lead to overfitting. 

Random Forests use bagging to build independent decision trees 

whereas gradient boosted trees use a method called boosting, which 

combines weak learners such as stumps (a tree with only one split.) The 

gradient boosted tree corrects the errors of the previous one [16].  

When working with regression problems, we start with a leaf that is the 

average value of the variable we are predicting. To calculate the average, we 

will add the total of all the win shares together and divide that by the number 

of players per year. Then, for every sample we calculated the residual [17]: 

Residual = actual value – predicted value.  

Once we have the residuals, we are then able to construct the decision 

tree. Every leaf has a prediction for the value of the residual. If the residuals 

end up being more than the leaves, we are then overfitting, so we will have 

to recalculate. To prevent overfitting, there is a hyperparameter called learn-

ing rate [17] that is helpful for each prediction. The learning rate is chosen 

carefully. If it is too low, the model will take too long to output the right an-

swer. In our case, we used 0.2 which is why this method is called Gradient 

Boosting. The prediction is then forced to be multiplied by the learning rate 

which causes us to use more decision-trees for the final solution. Average 

wins + Learning Rate * Residual predicted by decision tree  

If the learning rate hypermeter is not used, the residuals will automati-

cally share leaves, which would involve us finding these leaves and calculat-

ing the average of the 2 in one leaf.  The new set of residuals is found by 

subtracting the actual win share from the predictions made in the previous 

step of constructing the tree. Every leaf will then contain a prediction for the 

value of the residual.  

These steps are repeated until the number of iterations matches the num-

ber specified by the hyperparameter (There are no longer 2 outcomes shared 

in one leaf).  

Once trained, we then use all the trees to make a prediction of the value 

of the most valuable player. The final prediction is equal to the mean com-

puted in the first step, plus all the residuals predicted by the trees that make 

up the forest multiplied by the learning rate (0.2) [17]. Start by loading librar-

ies into Python such as pandas and sklearn as shows in figure 5 [18]. 
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Figure 5. sklearn library. 

 

Then load in the training data using the following code in figure 6 [18].  

 
Figure 6. Graphic of train/test data code. 

 

Then make a concatenated new dataset by appending the data to the 

new set:  

full_data = train_data.append(test_data) 

You can also drop columns to test and see how each piece affects the 

output [18]:   

full_data.drop(labels=drop_columns, axis1, inplace = True). 

Then split the data into training sets of both x and y as shown in figure 

7 [17].  

 

 
Figure 7. Graphic of split with x, y in Python. 

 

Applying different learning rates so that there is a comparison of the 

performance at those rates is important to see. This is done as follows in fig-

ure 8 [18]. 

 
Figure 8. Graphic of applying learning rates in Python. 

 

The primary focus is the accuracy of the validation set. The learning rates 

are given to check the accuracy by inserting previous years and confirming 

the same output as shown in figure 9 [18].  

 
Figure 9. Test results with learning rates. 

 

Then create a new classifier and specify the best learning rate found. 

There are faster ways to predict by using XGBoost and comparing if the re-

sults are similar. In this case, the results are very similar, but in other circum-

stances it is not always the case [18].  

It has been proven that taking smaller incremental steps towards the so-

lution achieves a lower variance for better accuracy on samples outside of the 

training data [16]. It is the overfitting process that is the most time consuming 

in GB. 

3. Results 
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For each of the four ML models, 100 independent versions of the models 

were trained and tested on standardized, randomly split samples of the da-

taset [19]. Utilizing an accuracy test from the metrics model of sklearn, accu-

racy scores were calculated for each model version [20]. These scores were 

then aggregated and processed to determine the mean and median scores in 

the following table: 

        Table 1. Results. 

Model Mean Acc. Median Acc. Min. Acc Max. Acc 

SVM 99.14% 99.06% 97.17% 100.0% 

NB 94.30% 94.34% 86.79% 100.0% 

RF 99.38% 100.0% 97.17% 100.0% 

GTB 99.44% 100.0% 97.17% 100.0% 

 

Three of the four classifier models (SVM, RF, and GTB) had mean accu-

racy scores above 99%. Of those three models, GTB had the highest mean ac-

curacy at 99.44%. RF and GTB shared the title for highest median accuracy at 

100%. 

The model with the lowest mean and median accuracy scores was NB, 

and although it appeared to perform at a very high level overall, with scores 

of 94.30% and 94.34%, respectively, its score is deceiving. Upon closer inspec-

tion, the NB model seemed to struggle with falsely classifying non-MVP can-

didates as MVP candidates. More specifically, it had difficulty with players 

whose statistical profiles were approaching MVP candidate caliber, but who 

had fallen short of such accomplishments. Since the MVP candidate class is 

so small (13 samples), relative to the non-MVP candidate class (~500), incor-

rectly classifying 5-6 samples as MVP candidates is a much larger problem 

than the accuracy score lets on at first glance. 

4. Conclusion 

Machine Learning is utilized across a wide range of domains for an even 

wider range of tasks. The present study set out to determine how effective 

each of four different Machine Learning models are in accurately classifying 

NBA players into two classes: MVP candidates and non-MVP candidates, 

based on individual player statistical profiles from the 2019-2020 NBA sea-

son. All in all, three of the four ML models performed their classification tasks 

admirably, resulting in accuracy scores of over 99%: SVM, RF, and GTB. 

5. Future work 

The impact of this study, on its own, is relatively small. However, as a 

preliminary/exploratory project, it has uncovered the potential for develop-

ing future work that could be of great value. As a result of time constraints, 

the scope of the project was rather limited. The following is a list of future 

work that should be completed in relation to the current study: 

• Utilization of multiple years of individual player statistical data, allow-

ing for a wider range of statistical profiles to be examined. 

• Development of class labels that account for the number of MVP votes a 

player has earned. This would allow for players to be classified into strat-

ified tiers, indicating how likely they are to win the MVP award. 

• Developing a methodology to utilize ML models during the NBA season, 

as player statistics are constantly changing, to act as a predictor. In con-

trast, the current study takes advantage of a full season’s worth of statis-

tics and a list of pre-established MVP candidates. 
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